

1.	What is the molality of a solution containing 200 mg of urea (molar mass				
	60 gm/mol) dissolved in	40 gm of water?			
	(A) 0.083	(B) 0.825			
	(C) 0.498	(D) 0.742			
2.	The volume of ethyl alcol	nol (density 1.15 g/mL) that must be added to			
	prepare 100 mL of 0.5 M	ethyl alcohol solution in water is:			
	(A) 1.15 mL	(B) 2.0 mL			
	(C) 2.15 mL	(D) 2.30 mL			
3.	16.02 × 10 ²⁰ molecules of	urea are present in 100 mL of its solution. The			
	concentration of solution	is:			
	(A) 0.01 M	(B) 0.001 M			
	(C) 0.2 M	(D) 0.1 M			
4.	How many grams of conc	entrated nitric acid solution should be used to			
	prepare 250 mL of 2.0 M	nitric acid. The concentrated acid is 70% HNO ₃ .			
	(A) 45.0 gm conc. HNO_3	(B) 50.0 gm conc. HNO₃			
	(C) 55.0 gm conc. HNO₃	(D) 60.0 gm conc. HNO ₃			
5.	The normality of orthoph	osphoric acid (H ₃ PO ₄) having purity of 70% by			
	weight and specific gravit	ty 1.54 is:			
	(A) 11 N	(B) 22 N			
	(C) 33 N	(D) 44 N			
6.	The molarity of H ₂ SO ₄ sol	ution, which has a density 1.84 gm/cc at 35 °C			
	and contains 98 % by wei	ght is:			
	(A) 1.84 M	(B) 18.4 M			
	(C) 2.68 M	(D) 26.8 M			
7.	In which case Raoult's Lav	w is not applicable?			
	(A) 1 M Sucrose	(B) 1 M Urea			
	(C) 1 M Glucose	(D) 1 M Sodium Chloride			
8.	P_A and P_B are the vapour	pressure of pure liquid components A and B			
	respectively of an ideal binary solution. If X_A represents mole fraction of				
	component 'A', the total	vapour pressure of the solution will be:			
	$(A) P_A + X_A (P_B - P_A)$	$(B) P_A + X_A (P_A - P_B)$			
_	$(C) P_B + X_A (P_B - P_A)$	$(D) P_B + X_A (P_A - P_B)$			
9.	Which of the following w	ill show negative deviation from Raoult's law?			
	(A) Acetone – Benzene	(B) Acetone - Ethanol			
	(C) Benzene – Methanol	(D) Acetone – Chloroform			

1 1 A	2 B	2 1		5 6	6 B	7 D	<u> </u>	a n
I I – A	2 - D	3 - A	4 - A	J – C	0-0	1-0	0-0	3-0
								1

10. Which one of the following gasses has the lowest value of Henry's law constant?

(A) N₂

Dev Academy – YNR | Website – devacademy.click

(B) He

- (C) CO_2 (D) O_2
- 11. A solution of two liquids boils at a temperature more than the boiling point of either of them. Hence, the binary solution shows:
 - (A) Negative deviation from Raoult's law
 - (B) Positive deviation from Raoult's law
 - (C) No deviation from Raoult's law
 - (D) Positive or Negative deviation from Raoult's law depending upon the composition.
- 12. Choose the correct statement. When concentration of a salt solution increased:
 - (A) Boiling point decreases while vapour pressure increases.
 - (B) Boiling point increases while vapour pressure decreases.
 - (C) Freezing point decreases while vapour pressure increases.
 - (D) Freezing point increases while vapour pressure decreases.
- 13. Lowering of vapour pressure of an aqueous solution of a non-volatile, non-electrolyte 1 molal aqueous solution at 100 °C is:

(A) 14.12 torr	(B) 31.2 torr
(C) 13.45 torr	(D) 35.2 torr

14. Out of the following 0.10 molal aqueous solutions, which one will exhibit the largest freezing point depression?

(B) K_2SO_4

(D) $Al_2(SO_4)_3$

- (A) KCl
- (C) $C_6H_{12}O_6$
- 15. The colligative property is not represented by :
 - (A) Elevation in boiling point
 - (B) Osmotic pressure
 - (C) Optical activity
 - (D) Relative lowering of vapour pressure
- 16. The osmotic pressure of 12% solution of cane-sugar at 17 °C is:
 - (A) 2.42 atm (B) 4.33 atm (C) 9.25 atm
 - (C) 8.35 atm (D) 16.30 atm

17. What mass of non-volatile solute (molar mass = 40 gm/mol) should be dissolved in 114 gm of octane to lower its vapour pressure by 20% ?

 (A) 9.8 gm
 (B) 10.0 gm

(C) 11.4 gm (D) 12.8 gm

10 – C	11 – A	12 – B	13 – C	14 – D	15 – C	16 – C	17 – B
--------	--------	--------	--------	--------	--------	--------	--------

- What is the freezing point of a solution containing 8.1 gm HBr in 100 gm water? Assuming the acid to be 90% ionised (given K_f for water = 1.86 K/mol).
 - (A) +0.35 (B) -0.35 (D) -3.54
 - (C) + 3.54 (D) 3.54
- 19. The molar concentration of the solution having osmotic pressure 0.0821 atm at 300 K will be:
 - (A) 3.0 (B) 0.3 (C) 0.03 (D) 0.003
- 20. During the depression of freezing point experiment an equilibrium is established between the molecules of:
 - (A) Liquid solvent and solid solvent
 - (B) Liquid solute and solid solvent
 - (C) Liquid solute and solid solute

Website – devacademy.click

Dev Academy – YNR

- (D) Liquid solvent and solid solute
- 21. The molar mass of the solute NaOH obtained from the measurement of the osmotic pressure of its aqueous solution at 27 °C is 25 gm/mol. Therefore, its ionisation percentage in this solution is:

(A) 50%	(B) 60%
---------	---------

- (D) 80%
- 22. Which of the following pair of solutions are expected to be isotonic at the same temperature?
 - (A) 0.2 M urea and 0.2 M NaCl

(C) 70%

- (B) 0.1 M urea and 0.2 M MgCl₂
- (C) 0.1 M NaCl and 0.1 M Na₂SO₄
- (D) 0.1 M Ca(NO₃)₂ and 0.1 M Na₂SO₄
- 23. The relative lowering of vapour pressure is equal to the ratio between the number of
 - (A) Solute molecules to the solvent molecules
 - (B) Solute molecules to the total molecules in the solution
 - (C) Solvent molecules to the total molecules in the solution
 - (D) Solvent molecules to the total number of ions of the solute.

24. Relative lowering of vapour pressure of a dilute solution is 0.2. What is the mole fraction of the non-volatile solute?

- (A) 0.8 (B) 0.5
- (C) 0.3 (D) 0.2

18 – D 19 – C 20 – A 21 – B 22 – D 23 – B 24 – D

25.	5. The mass of glucose that should be dissolved in 50 gm of water in orde							
	to produce the same lowering of vapour pressure as is produced by							
	dissolving 1 gm of urea	a in the same quantity of water is:						
	(A) 1 gm	(B) 3 gm						
	(C) 6 gm	(D) 18 gm						
26.	The freezing point of 1	% solution of lead nitrate in water will be:						
	(A) 2 °C	(B) 1 °C						
	(C) 0 °C	(D) below 0 °C						
27.	A solution containing 1	0 gm per dm ³ of urea (molar mass = 60 gm/mol)						
	is isotonic with a 5% so	is isotonic with a 5% solution of a non-volatile solute. The molecular						
	mass of this non-volati	le solute is:						
	(A) 300 gm/mol	(B) 250 gm/mol						
	(C) 350 gm/mol	(D) 270 gm/mol						
28.	Which has the least free	ezing point?						
	(A) 1 % C ₁₂ H ₂₂ O ₁₁	(B) 1 % KCl						
	(C) 1 % CaCl ₂	(D) 1 % C ₆ H ₁₂ O ₆						
29.	Which one of the state	ments given below concerning properties of						
	solution, describe a colligative effect?							
	(A) Boiling point of pure	water decreases by the addition of ethanol.						
	(B) Vapour pressure of pr	ure water decreases by the addition of nitric acid.						
	(C) Vapour pressure of p	ure benzene decreases by the addition of						
	naphthalene.							
	(D) Boiling point of pure	benzene increases by addition of toluene.						
30.	The Van't Hoff factor (i) for a compound which undergoes dissociation in						
	one solvent and associa	ation in other solvent is respectively:						
	(A) Greater than one and	less than one						
	(B) Less than one and gre	eater than one						
	(C) Greater than one and	greater than one						
	(C) Less than one and les	s than one						
31.	138 g of ethyl alcohol i	s mixed with 72 g of water. The ratio of mole						
	fraction of alcohol to w	/ater is.						
	(A) 1:4	(B) 1 : 2						
	(C) 3 : 4	(D) 1 : 1						
32.	How many grams of su	lphuric acid is to be dissolved to prepare 200 mL						
	aqueous solution havin	ig concentration of H_3O^+ ions 1 Molar at 25 °C ?						
	(A) 4.9 gm	(B) 9.8 gm						
	(C) 12.6 gm	(D) 19.6 gm						

Dev Academy – YNR

Unit : Solutions

33.	Mole fraction of the solute in a	1 molal aqueous solution is:
	(A) 1.77	(B) 0.177
	(C) 0.0177	(D) 0.0344
34.	25.3 grams of sodium carbonate	e (Na ₂ CO ₃) is dissolved in enough water to
	make 250 mL of solution. If sod	ium carbonate dissociates completely,
	molar concentration of sodium	ion and carbonate and are respectively?
	(A) 0.477 M and 0.477 M	(B) 0.955 M and 1.910 M
	(C) 1.90 M and 1.910 M	(D) 1.910 M and 0.955 M
35.	2.5 cm ³ of 0.2 M H ₂ SO ₄ solution	is diluted to 0.5 dm ³ . Find normality of
	the diluted solution.	
	(A) 0.002 M	(B) 0.02 M
	(C) 0.2 M	(D) 2.0 M
36.	4.0 gm of NaOH is dissolved in	100 mL solution. The normality of the
	solution is:	
	(A) 0.1 N	(B) 0.5 N
	(C) 4.0 N	(D) 1.0 N
37.	Calculate the mass of urea (NH ₂	CONH ₂) required in making 2.5 Kg of 0.25
	molal aqueous solution.	
	(A) 37.5 gm	(B) 53.7 gm
	(C) 73.5 gm	(D) 75.3 gm
38.	What is the mole fraction of be	nzene in solution containing 30 % by
	mass in CCl ₄ ?	
	(A) 1.459	(B) 0.459
	(C) 4.159	(D) None of these
39.	50 cm ³ of 0.2 N HCl is titrated a	gainst 0.1 N NaOH solution. The titration
	is discontinued after adding 50	cm ³ of NaOH. The remaining titration is
	completed by adding 0.5 N KOF	I. The volume of KOH required for
	completing the titration is.	
	(A) 12 ML	(B) 10 mL
	(C) 8 mL	(D) 5mL
40.	Molarity of a solution containin	g 5.0 gm of NaOH in 250 mL solution is:
	(A) 0.1 M	(B) 0.2 M
	(C) 0.4 M	(D) 0.5 M
41.	The mass % of NaOH in 1.25 mc	blal NaOH solution is:
	(A) 1.25 %	(B) 5.50 %
	(C) 4.76 %	(D) 5.28 %

37 – A

38 – B

34 - D

35 – A

36 – D

33 – C

Dev Academy – YNR | Website – devacademy.click

39 – B 40 – D 41 – C

42.	60 mL of 0.2 N H_2SO_4 , 10 mL of 0.5 N HNO ₃ and 30 mL of 0.1 N HCl are					
	mixed. The normality of the I	resulting mixture is:				
	(A) 0.1 N	(B) 0.2 N				
42	(C) 0.5 N	(D) 0.4 N				
43.	200 mL of 1 M HCl will be:	dathed by mixing 800 mL of 0.5 M FICI with				
	(A) 0.6 M	(B) 0.8 M				
	(C) 0.2 M	(D) 0.4 M				
44.	Two bottles 'A' and 'B' contain	ins 1 \dot{M} and 1 m aqueous solution of H ₂ SO ₄				
	respectively.	•				
	(A) 'A' is more concentrated that	an 'B'				
	(B) 'B' is more concentrated that	ın 'A'				
	(C) Concentration of 'A' is equa	l to concentration of 'B'				
	(D) It is not possible to compar	e the concentration				
45.	The volume of water is to be	added to 100 cm ³ of 0.5 N H ₂ SO ₄ to get				
	decinormal concentration is :					
	(A) 400 Ml	(B) 450 mL				
	(C) 500 mL	(D) 550 mL				
46.	10 mL of 0.1 N monobasic ac	id is required to neutralised 15 mL of NaOH				
	solution whose normality is :					
	(A) 1.5 N	(B) 0.15 N				
	(C) 0.066 N	(D) 0.66 N				
47.	Concentrated H ₂ SO ₄ is 98% b	y mass and has density 1.80 gm/mL. Volume				
	of acid required to make 1 L	of U.1 M H ₂ SU ₄ solution is : (P) 16.25 me				
	(A) 11.01 ML	(B) 16.35 mL				
40	(C) 8.35 mL	(D) 5.55 mL				
40.	1 mole of it is dissolved will	he ·				
	(A) 18 I	(B) 9 I				
	(C) 4.5 L	(D) 1.8 L				
49.	The volume of 10 N and 4 N	HCl required to make 1 L of 7 N HCl are :				
	(A) 0.60 L of 10 N HCl and 0.40	L of 4 N HCl				
	(B) 0.50 L of 10 N HCl and 0.50	L of 4 N HCl				
	(C) 0.80 L of 10 N HCl and 0.20	L of 4 N HCl				
	(D) 0.25 L of 10 N HCl and 0.75	L of 4 N HCl				
50 .	Mole fraction of a solute in b	enzene is 0.2 then find molality of solute.				
	(A) 2.2 m	(B) 3.2 m				
	(C) 3.6 m	(D) 4.2 m				
40						

51.	To pr amou	epare a s Int of Ag	olution of NO3 shoul	[:] concentr d be adde	ation of 0. ed in 60 m	.03 gm/m L of soluti	L of AgNC on?)₃, what
	(A) 0.8	8 gm		(B) 0.18 gm			
	(C) 1.8	8 gm		(D) None of	f these		
52.	How	much vo	lume of 1	M H₂SO₄ i	s required.	to neutra	lise 20 m	L of 1 M
	NaOł	1?						
	(A) 10) Ml		(B) 15 mL			
	(C) 20) mL		(D) 25 mL			
53.	Vapo 25 °C	ur pressu are 200	ire of chlo mmHg and	roform (C d 41.5 mn	HCl₃) and Hg respe	dichloron ctively. Va	nethane (pour pres	CH ₂ Cl ₂) at sure of the
	solut	ion obtai	ned by mi	xing 25.5	grams of	CHCl ₃ and	I 40.0 grai	ms of
	CH₂C	l_2 at the s	same temp	oerature v	vill be :	-	5	
	(A) 17	′3.9 mmH	q .	(B) 375.9 m	mHg		
	(C) 61	5.0 mmH	g	(D) 90.63 m	mHg		
54.	The s	ystem th	at forms n	naximum	boiling az	eotrope is	5:	
	(A) Et	hanol and	Acetone	(B) Carbon	disulphide	and aceto	ne
	(C) Ac	cetone and	d chlorofoi	m (D) Benzene	e and tolue	ene	
55.	Amo	ng the fo	llowing, tl	ne azeotro	opic mixtu	re is :		
	(A) C ₂	$H_5Br + C_2$	H₅Cl	(B) CCl4 + (CHCl3		
	(C) C ₆	$H_{14} + C_7 H_7$	16	(D) C ₆ H ₅ Br -	+ C ₆ H₅Cl		
56.	The v	apour pr	essure of	pure solve	ent is 0.8 n	nmHg at a	n particula	r
	temp	erature.	On additic	on of a no	n-volatile	solute 'A'	the vapo	ur pressure
	of so	lution be	come 0.6	mmHg. Tl	ne mole fra	action of o	componer	nt 'A' is :
	(A) 0.	75		(B) 0.52			
	(C) 0.3	35		(D) 0.25			
57.	At 30	0 K, the v	vapour pre	essure of a	an ideal so	lution cor	ntaining 1	mole of
	liquio	d 'A' and	2 moles o	f liquid 'E	s' is 500 m	mHg. The	vapour p	ressure of
	the se	olution ir	ncreases by	y 25 mm⊦	lg, lf one r	nore mole	e of 'B' is a	added to
	the a	bove idea	al solution	at 300 K.	Then the	vapour pr	essure of	'A' in its
	pure	state is :			D) 0 D 0			
	(A) 20	0 mmHg		(B) 250 mm	Hg		
50	(C) 30	0 mmHg			D) 600 mm		1	o 17 1 1
58.	Henr	y's law co	onstant of	oxygen is	51.4×10^{-3}	' mol L ⁻ ' a'	tm ⁻ at 29	8 K. How
	much	of oxyg	en is disso	lved in 10	10 mL at 2	98 K when	the parti	al pressure
		ygen ເs ບ	.5 atm?	,				
	(A) 2.	∠4 mg 4 ma a		(в) 3.2 mg			
	(C) 1.4	4 mg		(ט) 2.82 mg			
51	- C	52 – A	53 – D	54 – C	55 – B	56 – D	57 – C	58 – A

59.	At 300 K two pure liquid 'A' and 'B' have vapour pressure respectively					
	150 mmHg and 100 mmHg. In an equimolar liquid mixture of 'A' and 'B',					
	the mole fraction of 'B' in the va	apour mixture at this temperature is :				
	(A) 0.8	(B) 0.6				
~~	(C) 0.5	(D) 0.4				
60.	Vapour pressure of pure A is /	U mmHg at 298 K. It forms an ideal				
	solution with B in which mole	fraction of 'A' is 0.8. If the vapour				
	pressure of the solution is 84 m	mHg at 298 K, the vapour pressure of				
	pure B at 298 K is: (A) 140 mm/lg	(\mathbf{P}) 70 mm la				
	(A) 140 mmHg	(B) 70 mmHg				
61	(C) 50 mmg	(D) 20 mmHy				
01.	Paoult's law 2	airs show a positive deviation from				
	(A) Water and Nitric acid	(B) Banzana and Mathanal				
	(C) Water and Hydrochloric acid	(D) Acetope and Chloroform				
62	At 298 K the total pressure of a	n ideal solution obtained by mixing 3				
02.	moles of 'A' and 2 moles of 'B' i	s 184 torr What is the vanour pressure				
	(in torr) of nure 'B' at the same	temperature ? (Vanour pressure of 'A' at				
	298 K is 200 torr)					
	(A) 100	(B) 120				
	(C) 140	(D) 160				
63.	If two substances 'A' and 'B' hav	ve vapour pressure in pure respectively 1 :				
	2 and have mole fraction in solu	Ition 1 : 2 respectively then mole fraction				
	of 'A' in vapour is :	. ,				
	(A) 0.1	(B) 0.2				
	(C) 0.3	(D) 0.52				
64.	If ' α ' is the degree of dissociation	on of Na ₂ SO ₄ then Van't Hoff factor (i)				
	used for calculating the molecu	lar mass is :				
	(A) 1 + α	(B) 1 – α				
	(C) 1 + 2α	(D) 1 – 2α				
65.	Distribution Law was given by :					
	(A) Nernst	(B) Ostwald				
	(C) Henry	(D) Van't Hoff				
66.	What is the freezing point of a s	solution containing 8.1 gm HBr in 100 gm				
	Water assuming the acid to be 9	90 % ionised ? (K _f for water is 1.86 K/mol)				
	(A) 0 °C	(B) 0.85 °C				
	(C) 3.53 °C	(D) 5.62 °C				
59	- D 60 - A 61 - B 62 - D	63 - B 64 - C 65 - A 66 - C				

67. 68.	Pure benzene freezes at 5.2 °C. A acid ($C_6H_5CH_2COOH$) in 4.4 gm c 4.47 °C. From the observation, o (A) Phenylacetic acid exists as such (B) Phenylacetic acid undergo part (C) Phenylacetic acid undergo com (D) Phenylacetic acid dimerises in b What happens when an egg is ke	A solution of 0.223 gm of phenylacetic of benzene (Kf = 5.12 Kg/mol) freezes at ne can conclude that : in benzene ial ionisation in benzene oplete ionisation in benzene benzene ept in saturated solution of NaCl after
	(A) Equivilles will shrink	
	(B) Egg will swell	
	(C) Egg will remain same	
	(D) Egg will first shrink and then sv	vell
69.	What happens to freezing point	to benzene when naphthalene is added ?
	(A) Increases	(B) Decreases
	(C) Remains unchanged	(D) First increases and then decreases
70.	Dissolution of 1.5 gm of a non-w	volatile solute (molecular weight = 60) in
	250 gm of a solvent reduces its i	reezing point by 0.01 °C. Find the molal
	(Δ) 0.1	(B) 0.01
	(C) 0.01	(D) 0.001
71.	20 gm of a non-volatile solute is	added to 500 gm of solvent. Freezing
	point of pure solvent and solution	on are 5.48 °C and 4.47 °C. Molecular
	mass of the solute is: (Given K _f is	s 1.93 °C/m)
	(A) 70.6	(B) 73.2
	(C) 75.2	(D) 76.4
72.	A 0.2 molal HX acid ionises 20 %	in water. (K _f = 1.86) Freezing point of
	the solution is :	
	(A) = 0.45	(B) = 0.50
72	(C) = 0.55	(D) = 0.60
75.	method ?	leasured by the Ostwald-Walker dynamic
	(A) Vapour pressure of the solvent	
	(B) Lowering of Vapour pressure	
	(C) Relative lowering of vapour pre	essure
	(D) All of the above	

74.	Camphor is often used in molecular r	nass determination because
	(A) It is readily available	
	(B) It has a very high cryoscopic constan	t
	(C) It is volatile in nature	
	(D) It is solvent for organic substances	
75.	Which of the following colligative pr	operties can provide molar mass of
	proteins with greater precision ?	
	(A) Relative lowering of vapour pressure	
	(B) Elevation in boiling point	
	(C) Depression in freezing point	
	(D) Osmotic pressure	
76.	The mole fraction of solute in 2.5 mo	lal aqueous solution is :
	(A) 0.086	(B) 0.068
	(C) 0.034	(D) 0.043
77.	The volume of 80 % sulphuric acid (H	I₂SO₄) by weight required to prepare
	1 L of 0.2 M H ₂ SO ₄ is :	
	(A) 13.60 mL	(B) 15.60 mL
	(C) 9.08 mL	(D) 71.08 mL
78.	Which of the following statement is	false ?
	(A) Both molality and mole fraction do r	not change with temperature.
	(B) 1 M aqueous solution of glucose is n	nore concentrated than 1 m solution.
	(C) Sodium amalgam is an example of s	olid in solid solution.
	(D) PPM by mass express mass of solute	in gram per 10 ³ Kg of the sample.
79.	The density of a solution prepared by	dissolving 120 gm of urea (molar
	mass = 60 gm/mol) in 1000 gm of wa	ter is 1.15 gm/mL. The molarity of
	this solution is :	
	(A) 1.78 M	(B) 2.05 M
00	(C) 1.02 M	(D) 2.36 M
80.	A 6.9 M solution of KOH in water con	tains 30% by mass of KOH. The
	(A) 2.061 gm/ml	(\mathbf{P}) 1 289 gm (\mathbf{m})
	(A) 2.001 gm/mL	(B) 1.200 gm/mL
01	(C) 1.100 gm/mL	(D) 1.025 gm/mL
01.	The mole fraction of water in a sulph	uric acid solution is 0.65. The
	$\frac{1}{100}$	(P) 9.6
	(A) 4.5	
	(C) 5.2	(U) 9.0

78 – C

79 – B

80 – B

81 – D

77 – A

75 – D

76 – D

74 – C

82.	The vapour pressure of a solution of benzene and toluene is (mole fraction of benzene is 0.2, vapour pressure of pure benzene and pure toluene are 160 mmHg and 60 mmHg respectively)		
	(A) 48 mmHg	(B) 42 mmHg	
	(C) 37 mmHg	(D) 35 mmHg	
83.	Which of the following solution pair	can be separated into its pure	
	components by fractional distillation	1?	
	(A) Water and Ethyl alcohol	(B) Water and Hydrochloric acid	
	(C) n-Hexane and n-Heptane	(D) Acetone and Chloroform	
84.	Which of the following statements a	bout the ideal solution is correct ?	
	(A) Enthalpy of mixing $= 0$		
	(B) Free energy change of mixing $= 0$		
	(C) Volume of mixing $= 0$		
	(D) Obeys Raoult's law		
85.	Two liquids 'A' and 'B' have vapour p	pressure of 0.685 bar and 0.264 bar	
	respectively. In an ideal solution of the two, the mole fraction of 'A' at		
	which the two liquids have equal par	tial pressure is :	
	(A) 0.306	(B) 0.714 (D) 0.296	
96	(C) 0.200 The molal elevation constant is the r	(D) 0.300	
00.	(A) Molarity	(B) Molality	
	(A) Molarity (C) Bailing point of pure solvent	(D) Mole fraction	
87	The amount of solute (molar mass -	60 gm/mol) that must be added to	
07.	180 gm of water so that vanour pressure of water is lowered by 10% is		
	(A) 20 gm	(B) 30 am	
	(C) 40 gm	(D) 60 gm	
88.	A solution containing 62 gm of ethyl	ene glycol (molar mass 62 gm/mol)	
	in 250 gm water is cooled to -10 °C. If K _f for water is 1.86 K Kg mol ⁻¹ , th		
	amount of water separated as ice is :		
	(A) 64 gm	(B) 48 gm	
	(C) 32 gm	(D) 16 gm	
89.	On dissolving 3.24 gm of sulphur in 4	10 gm of benzene, boiling point of	
	solution was higher than that of benzene by 0.81 K. The molecular		
	formula of sulphur is (Given that K _b f	or benzene is 2.56 K Kg mol ⁻¹):	
	(A) S ₂	(B) S ₄	
	(C) S ₆	(D) S ₈	

86 – B

87 – D

88 – A

89 – D

85 – C

83 – C

84 – B

82 – A

90.	What happens when blood cells are placed in pure water ?				
	(A) The fluid in blood cells rapidly moves into water				
	(B) The water molecules rapidly move into blood cells				
	(C) The blood cells dissolve in wat	er			
	(D) The blood cell first shrinks and	I then swell up.			
91.	An aqueous solution boil at 100).512 °C. The freezing point of the			
	solution is $(K_f = 1.86 \text{ K Kg mol}^-)$	¹ and $K_{b} = 0.512 \text{ K Kg mol}^{-1}$):			
	(A) 0.93 °C	(B) −0.93 °C			
	(C) 1.86 °C	(D) −1.86 °C			
92.	Solution 'A' contains 1 gm of u	rea in 100 mL of solution and solution 'B'			
	contains 2 gm of glucose in 100 mL of solution. Point out the correct				
	statement :				
	(A) Boiling point of 'A' will be less than 'B'				
	(B) Freezing point of 'A' will be less than 'B'				
	(C) Osmotic pressure of 'A' will be less than 'B'				
	(D) Both will have same boiling po	vint freezing point and osmotic pressure			
93	1 mole of a liquid 'A' and 2 mol	e of liquid 'B' form a solution having a			
55.	total vanour pressure of 46 torr. The vanour pressure of pure liquids 'A'				
	and 'B' are 36 and 48 torr respectively. The solution :				
	(A) is an ideal solution				
	(B) shows negative deviation from Baoult's law				
	(C) shows nositive deviation from Racult's law				
	(D) dissolution is exothermic				
94	Two liquids 'A' and 'B' form ide	al solutions having vanour pressure 200			
54.	and 100 mmHa respectively. The mole fraction of 'A' in vanour phase is				
	equilibrium with an equimolar solution of the two is .				
	$(\Delta) \cap 33$	(B) 0.61			
	(C) 0.46	(D) 0.67			
05	What will be the relation betwe	(D) 0.07			
95.	. What will be the relation between osmotic pressure at 273 K if 12 gm				
	D2 and D2 respectively when discolved in the same amount of water 2				
	r_2 and r_3 respectively when de	(R) $D1 < D2 < D2$			
	(A) r 2 < r 2 < r 1 $(C) p 2$	$(D) \Gamma I \ge \Gamma Z \ge \Gamma Z$			
	(C) r 2 > r 1 > r 3	(U) Y3 > Y1 > Y2			

☆ google.com/search? +	:			
∠ Google				
Q devacademy.click X	Ŷ			
All Images Videos Shopping Short v	videos			
devacademy.click https://devacademy.click	:			
Dev Academy Unlock the world of learning with a fresh perspective! Join us today and unlock your true potential! Explore Courses Start Learning Revision Notes				
Contact Us	>			
Courses	>			
Revision Note	>			
Student Registration	>			
Dashboard	>			
Chapter 1 Class 11 Chemistry				

Website – devacademy.click

Dev Academy – YNR

Follow us on social media

🜀 Instagram